Building quantum computers of the future

Scientists from Japan and Sydney have collaborated and proposed a novel two-dimensional design that can be constructed using existing integrated circuit technology.This design solves typical problems facing the current three-dimensional packaging for scaled-up quantum computers, bringing the future one step closer.

Building quantum computers for large-scale computation is proving to be a challenge in terms of their architecture. The basic units of a quantum computer are the “quantum bits” or “qubits. The theoretical requirement for quantum computers is that these are arranged in two-dimensional (2-D) arrays, where each qubit is both coupled with its nearest neighbor and connected to the necessary external control lines and devices. When the number of qubits in an array is increased, it becomes difficult to reach qubits in the interior of the array from the edge. The need to solve this problem has so far resulted in complex three-dimensional (3-D) wiring systems across multiple planes in which many wires intersect, making their construction a significant engineering challenge.

A group of scientists from Tokyo University of Science, Japan, RIKEN Centre for Emergent Matter Science, Japan, and University of Technology, Sydney, led by Prof Jaw-Shen Tsai, proposes a unique solution to this qubit accessibility problem by modifying the architecture of the qubit array.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s