Creating Robots from living cells

Biological Robots may reproduce themselves , taking over human Civilisation

Selective breeding and, more recently, genetic engineering permit the production of novel plants and animals for agriculture and horticulture, and as pets. Souped-up bugs for industrial processes can also be made in these ways. Researchers are working, too, on growing isolated animal organs for testing drugs and eventually, perhaps, for transplant surgery.

From report in the Proceedings of the National Academy of Sciences,Joshua Bongard of the University of Vermontand their colleagues have designed organic robots from their cellular components, and then set about realising those designs by joining together specific types of stem cells taken from a well-studied species of African frog, Xenopus laevis. The result (pictured) is close to matching the biological definition of an organism, in that it is capable of behaving autonomously and contains cell types that are specialised to perform different roles.

Though only a millimetre or so across, the artificial organisms Dr Bongard and Dr Levin have invented, which they call xenobots, can move and perform simple tasks, such as pushing pellets along in a dish. That may not sound much, but the process could, they reckon, be scaled up and made to do useful things. Bots derived from a person’s own cells might, for instance, be injected into the bloodstream to remove plaque from artery walls or to identify cancer. More generally, swarms of them could be built to seek out and digest toxic waste in the environment, including microscopic bits of plastic in the sea.

To design their bots Dr Bongard emptied a computer program called an evolutionary algorithm. This worked by creating virtual representations of thousands of arrangements of cells that might achieve a particular task. It then tested those arrangements, using what is known about the biophysics of Xenopus cells, for suitability to perform the task in question, picked the most promising versions to form the basis for thousands more cellular arrangements, and then repeated the process until something properly fit for purpose emerged. That done, it was merely a matter of building the pattern which the algorithm had arrived at out of actual Xenopus cells, using microsurgical techniques to shape groups of cells in the way the pattern dictated.

The demonstration bots Dr Bongard and Dr Levin have made use two types of stem cell. Some are so-called pluripotent cells taken from early-stage embryos. These embryonic cells retain wide powers to turn into other cell types. The others are cardiac progenitor cells, a more specialised type of stem cell already destined to generate heart muscle.

Placed in a dish, bots made in this way were able to propel themselves along the dish surface via contractions of the heart-muscle cells within them. Besides pushing single pellets, groups of bots put into a dish together were able to work collectively, moving around in circles and gathering the pellets into neat piles.

A more controversial suggestion is to equip xenobots with reproductive systems perhaps as simple as allowing them to divide themselves in two, in the way that flatworms can. This would help any application that required a swarm of the critters. It might also, though, raise concerns about escapees establishing themselves in the wild. All this, says Dr Bongard, means it will be necessary to work with policymakers to decide how the production of future life forms, as useful as they might be, might be regulated.

The new organisms could also do with upgrading in certain ways. This is because they do not have any apparatus for feeding themselves. In one sense that is a good thing, for it soothes fears about safety. If a bot should escape it would expire at the end of its allotted time and, being made simply of frog cells, would be biodegradable and non-toxic. But because longer-lived bots would be more useful, the researchers are looking at ways to extend their creations’ lives.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s